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In this paper we address the application of an Echelle spectrometer for metal sorting tasks using laser induced
breakdown spectroscopy in the industrial environment. Echelle spectrometers guarantee the simultaneous de-
tection of broad spectral intervals with sufficient spectral resolution, which is highly desirable for LIBS applica-
tions. Until today, this benefit was overshadowed by the reduced speed of detection which typically could not
exceed 10 frames per second. In this paper we present a newly developed high speed classification setup for
scrap metal sorting, equipped with an Echelle spectrometer, capable of classifying 25 samples per second using
a single burst double pulse excitation, a fast EMCCD camera and an externally triggered, chopper based timing.
Different multivariate discriminatory techniques (PCA, PLS-DA) are applied and compared to gain maximum
use of the spectra created by this setup. A simultaneous discrimination of 10 classeswas donewith N90% correct-
ness for most classes and an analysis of possible sources of error unique for non-laboratory experiments is
presented.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Laser induced breakdown spectroscopy (LIBS) is a well-known ana-
lytical tool with one of the major strengths being its speed. Therefore it
is a method of choice in high throughput applications where a large
number of individual analytical information is required within a short
time [1–4]. Sorting of scrap metal is such an application. In a typical
recycling situation, pieces of scrapmetal are being shred and afterwards
sorted by their elemental content. The composition of thematerial to be
sorted varies widely and every single piece needs to be analyzed
individually.

As LIBS does not require (almost) any sample preparation and is ca-
pable of performing contact less analysis [5], it is a promising candidate
for such an application. Several applications of applying LIBS to sorting
or generally speaking classification tasks have been reported in the liter-
ature already [3,6–12]. Due to the requirement of high sample through-
put, detection speed is the limiting factor inmost cases. Therefore, up to
now mainly Paschen–Runge or Czerny–Turner spectrometers coupled
with photomultiplier tubes or linear CCD detectors are being widely
used [4,13].

Echelle spectrometers seem to be particularly suitable for LIBS appli-
cations due to their high spectral resolution, the broad simultaneously
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detectable wavelength range and the compact setup. But the two
dimensional character of the Echelle spectrum pattern requires, particu-
larly for high-speed sorting, a fast and sensitive 2D-array detector.
Normally ICCD-cameras which provide the required time resolution
to separate the specific atomic emission from the unspecific Brems-
strahlung are used as detectors for LIBS Echelle spectrometers. But com-
pared to state-of-the-art back-thinned CCD and EMCCD detectors these
cameras are typically expensive, big and are affected by lower spatial
resolution and reduced quantum efficiency of the image intensifier
photocathodes.

The development of fast and inexpensive 2D EMCCD cameras [14]
has allowed us to build the first high speed sorting setup based on re-
mote LIBS detection by an Echelle spectrograph. The necessary time res-
olution is realized by a fast rotating chopper wheel [15] in front of the
entrance slit. In the application shown in this paper the chopper is syn-
chronized with the experimental setup and the conveyor belt as an ex-
ternal trigger source. Contrary to ICCD cameras, in this way the full
spatial resolution and the high UV quantum efficiency of the CCD detec-
tor can beused for high performance spectrum recording [15,16]. Such a
systemhas a very high versatility for performing different, even varying,
sorting tasks which is the first key point of the present work.

To make use of the large number of spectral information covered by
an Echelle spectrum, multivariate data analysis can be applied. Several
chemometric methods for discriminant analysis of LIBS spectra have
been shown in the literature [11,17–19]. As speed is an issue in sorting
applications, algorithms need to be evaluated not only by their classifi-
cation correctness but also by the time needed to apply them to new
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unknown samples. In the final application of the system, most of the
time will be consumed by the camera readout and only little time is
left for data treatment. Due to this speed issue, we have limited our-
selves to the simple chemometric methods principle components anal-
ysis (PCA) and partial least squares regression discriminant analysis
(PLS-DA). The other key point of this work is the comparison of a dis-
crimination based on both techniques when applied to unknown
samples.

2. Theoretical

2.1. Classification by PCA and PLS-DA

Details on PCA and PLS-DA algorithms can be found in the literature
[11,20–22] andwill not be repeated here. In this paper we only want to
pinpoint themajor differences of both techniques that influence the re-
sults presented in thiswork.While PCA is an unsupervisedmethod, PLS-
DA is a supervised one. This means, that during training, PCA finds the
major differences in themeasured spectra, represented by the principal
components. However, the spectral features found by this approach do
not necessarily contain any information useful for the application of in-
terest. This may effectively result in a grouping of spectra according to
other than the required properties. Such a possible grouping failure re-
quires a good validation process in order to detect potential systematic
misclassification in the later application. On the contrary, PLS-DA takes
in advance the expected grouping as an input and tries to find only
those features, called factors, (e.g. emission lines) useful for the request-
ed task. Still, the classification quality should be evaluated by validation.

The typical validation approach for both techniques is cross valida-
tion [23,24]. For cross validation, some of the training spectra are left
out during model building and later classified with the model created
using the remaining spectra. This process is repeated several times, al-
ways taking other spectra for the validation set, and classification errors
are estimated. Another validation approach is to create a separate vali-
dation set of spectra that is not included in the modeling set. This ap-
proach can be applied if a large number of measurements can be
performed. The benefit of this approach is that the separate dataset
can be taken independently of the model spectra and the test therefore
covers repeatability and helps avoiding overfitting.

3. Experimental

3.1. Instrumentation

Experimentswere carried out using an adapted version of an Aryelle
150 spectrometer (LTB, Berlin). This compact spectrograph, which is
only 210 mm in its largest dimension, features an Echelle grating
which separates the spectral range from 240 to 550 nm into 45 diffrac-
tion orders focused after prism cross dispersion on the 2D EMCCD camera
Rolera em-c2 (Qimaging, Canada). The spectroscopic potential of the
Aryelle optical design has been demonstrated already for combined LIBS
and Raman investigations using a laser microscope [25] and in a minia-
turized version for planetary research applications [26]. The Aryelle 150,
which is based on the latter setup, has a focal length of 150 mm and
comes up with a spectral resolving power λ/ΔλFWHM of 7500, having
a slit width of 50 μm and f/7 aperture, on the small detector area of
8 × 8 mm2. The 1004 × 1002 pixel 14 Bit high speed frame transfer
camera is synchronized with the chopper wheel and an external trigger
signal created by the conveyor belt. For plasma excitation the double
pulse (DP) laser system Twins BSL (Quantel, France) operating at 25 Hz
emitting 2 × 200 mJ at 1064 nm was used. The laser was focused with a
focal length of 800 mm; the beam waist position was located approx.
10 mm above the conveyor belt surface in order to provide the best
focus to the majority of samples with the thickness varying between
1 and 30 mm. The first laser pulse was intended to remove paint, dirt or
oxide layers whereas the second laser pulse was applied to perform the
actual measurement. An inter-pulse separation of 20 μs was chosen to
allowboth pulses to overlap on the targetmoving by 3ms˗1 andminimiz-
ing interaction between plasmas created by both pulses. The focal length
of the collection optics was fixed at 300 mm to have a high tolerance for
varying measurement distance as a result of varying sample size. For a
schematic of the detection system see Fig. 1. Single burst (one double
pulse per sample) measurements were performed allowing the
identification and sorting of 25 individual samples per second. The re-
sult of the classification is then sent out to a fieldbus system controlling
the actual sample separation based on the classification result. The
maximum time between sample arrival at the detection system and
result arrival at the fieldbus system must not exceed the transit time
of 40 ms. The fastest comparable system for single piece identification
reported in the literature uses a 40 Hz laser, analyzing the created
plasma with a Paschen–Runge spectrometer [4].

The entire system was designed for robustness against physical
damage by the samples, strong vibrations in the industrial environment
and dust (IP64). Humidity and ambient temperature fluctuation are
compensated by housing the components in insulated boxes equipped
with active heating and cooling devices keeping every part of the sys-
tem at its individual optimal operating conditions.

The detection system has no moving parts except for the chopper.
Instead, upstream arrangement ensures a constant spacing and posi-
tioning of the samples and triggering by a sensor in the final assembly.

3.2. Samples

Samples used in this study were shredded pieces of metals of differ-
ent elemental composition and of different size and shape taken unal-
tered from a recycling facility and no further treatment was applied.
Sample heights varied between approx. 1 and 30mm.Most of the sam-
ples were covered by a layer of dirt containing significant amounts of
calcium. Therefore, most spectra were dominated by the intense emis-
sion lines Ca II 393.366 and Ca II 396.845 along with other Ca lines of
lower intensity. Classification was performed for nine different alloys
with a single main element and one secondary alloy (Ag, Al, Cr, Cu, Fe,
Ni, Pb, Sn, Zn and brass) that all needed to be separated from each
other. For most classes, at least 100 individual samples were taken to
perform model building and validation measurements. For availability
reasons, Cr and Sn sample sets contained less samples.

3.3. Data treatment for multivariate classification

Data treatment and calculationswere performed using a self-written
classification module for the spectrometer software Sophi (LTB, Berlin).
Calculations were separated into a training phase and an application
phase.

During training, spectra were taken in the lab and models based on
themwere built and evaluated by validation. As part of themodel build-
ing appropriate data pretreatment was evaluated and a multivariate
model was created and validated using saved data. During optimization
of the modeling parameters, pretreatments such as interpolation, spec-
tra rejection by threshold, spectral outlier detection for model building,
truncation, normalization, Savitzky–Golay smoothing, binning, differ-
entiation and polynomial baseline correction were tested. Because
most pretreatments must not only be applied during model building
but also during model application, the time consumption for applying
them was equally important as the achieved classification correctness.
The pretreatment parameters need to be evaluated for every sorting
task and model individually.

The model, containing all information about the required pretreat-
ment and the final chemometrics, was saved as a file and transferred
to the sorting facility where it was loaded into the spectrometer soft-
ware and applied to real time measurements. The benefits of this ap-
proach are a high flexibility of the sorting instrument as it can be
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Fig. 1. Schematic of the detection optics used. The laser beam is widened before focusing and then directed through a pierced mirror onto the target. The emitted light from the plasma is
collected by a toroidal mirror and focused onto an optical fiber attached to a modified Aryelle 150 spectrometer.
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adjusted to new sorting tasks or corrected in case of unpredicted chang-
es in the instrument or ambient conditions.

4. Results and discussion

4.1. Model building

For model building, 100 single burst double pulse spectra for every
spectral class were taken. For most classes each spectrum was taken
on an individual sample. Only for Cr and Sn repetitive measurements
on some samples were necessary.

For PLS-DA analysis, spectra were smoothed, truncated in order to
range from 242 to 548 nm and vector normalized. Truncation is done
in order to stabilize the system against possible spectral shifts in case
of thermal stress. Before normalization, spectra with peak intensity
smaller than 750 counts (approx. three times noise) were rejected,
because at this level, the spectra are dominated by noise. In the applica-
tion phase, spectra having such a low maximum intensity will be
assigned as class number 0, called trash, to designate that no classifica-
tion was possible. Number of factors for the PLS-DA was chosen to be
number of classes minus one, so in the presented case, the PLS-DA
model was calculated for 9 factors. For PCA analysis the spectral pre-
treatment differs from the PLS-DA pretreatment due to the unsuper-
vised character of the technique. The spectra were as well smoothed
and truncated, but additionally, spectral regions dominated by Ca lines
originating from the dirt layer on the samples had to be removed to
avoid grouping according to the contamination level of the samples. Ad-
ditionally, the intensity filter for assigning a sample to trash was raised
to 1500 counts (approx. six times noise) because at lower values the
possibility of misclassifications rose significantly. Finally the spectra
were vector normalized. During tests with cross validation, an optimal
number of 7 principle componentswas found and used for the presented
work.

For the industrial application, the optimization goal is to have a large
percentage of correct classifications (number of true positives versus a
number of false negatives) and a low percentage of discarded spectra.
Another importantmeasure for the quality of a classification is the puri-
ty of the output. It is calculated as the percentage of correctly sorted
samples among all samples that were identified to be of the same
class (true positives versus false positives). This means, a sample that
cannot be classified correctly should be tagged and removed rather
than be grouped with the wrong box thus reducing the purity of that
output.

4.2. Validation and testing with saved spectra

To avoid overfitting, validation was always performed with a set of
spectra different from the training data. The model was iteratively im-
proved by a stepwise validation approach with increasing complexity
of the validation data.

In a first step, validation was performed using a dataset consisting of
1000 spectra of the same samples used for the training data, taken on
another day but with the same instrument and experimental parame-
ters. If in this first step a model was found to properly classify the vali-
dation set, another, larger validation set containing 8000 spectra taken
with the same instrument during several independent measurement
campaigns was used. During those measurement campaigns the exper-
imental parameters (inter-pulse delay (8–20 μs), gate delay (by chop-
per, 0.3–1 μs), gain (500–800), binning (1 × 1, 2 × 2), distance of the
sample to the fixed focal length optics (±2 cm))were varied and tested
against the model created with spectra taken with fixed settings. The
purpose of this test is to simultaneously check model stability against
long time changes in the system and to avoid overfitted models.

Fig. 2 shows the confusion matrices for the classification of the
validation data using PLS-DA and PCA as classification models. PCA
turned out to show a rather poor classification with the setup used,
though preliminary tests using a higher resolution (15,000) spectrome-
ter (Aryelle 400, LTB) for model building and validation showed a good
classification power for both PCA and PLS-DA (data not shown). PLS-DA
gives a good classification for most alloys. However, silver and brass
samples can only be classified with 78 and 71% correct assignments
respectively. The most false assignments of silver are copper and
brass. This is not surprising because most silver samples were silver-
ware which is usually made of an alloy of silver with copper. Up to
20% copper is not unusual for such samples. Brass ismainlymisclassified
as copper or zinc. This is also not surprising because both are the main
elements forming that alloy. Similar considerations can be made for
othermisclassifications. Chromium samples from the junk yard are usu-
ally chrome plated steel or brass samples. The same applies for nickel
samples. Additionally, both types of plating are often combined. This



Fig. 2. Confusion matrix for the validation of the PLS-DA and PCAmodel using a separate set of spectra generated similar to the model spectra using the same samples. Values within the
square are the number of classification results for every class. Row trash is the number of discarded spectra for every class, % correct is the percentage of correct results and the average
correctness in the right column of that row. The same applies to the % trash row for discarded spectra.
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indicates the difficulty for the proper application of a sorting task with
real world samples.

Fig. 3 depicts the confusion matrix for PCA and PLS-DA analysis of
the aforementioned larger validation set. For the PLS-DA, no significant
change in the classification capabilities can be observed. This indicates a
good robustness of themodel against changes (intentional and uninten-
tional) of the experimental parameters. The PCA on the other hand is af-
fected by a significant drop in the classification capabilities. Correct
assignments dropped to values as low as 7% for zinc and 12% for brass.
This indicates that the principle components found duringmodel build-
ing are not representative for the samples measured but for the
measurements themselves. In other words, a serious overfitting has
happened that was not detected even with the separate validation set
used during model development. This test demonstrates a possible pit-
fall when building models for the industrial application, where model
robustness is of major importance if the sorting machinery is supposed
to run 24/7 with as few repeated modeling sequences as possible.
Simultaneously, the PCA result presents a good example for the impor-
tance of distinguishing between classification correctness and final
purity of the sorted samples. While iron samples can be classified with
a correctness of 98%, the purity of iron samples in the output is only
28%, due to misclassification of other samples. The vice versa
Fig. 3. Confusionmatrix for the validation of the PLS-DA and PCAmodel with spectra generated
number of classification results for every class. Row trash is the number of discarded spectra for
right column of that row. The same applies to the % trash row for discarded spectra.
observation can be made for chromium. While chromium classification
is rather poor with 35% correct assignments, the final output is 100%
chromium. The same trend exists for zinc. However, if all classes are
being identifiedwith a high correctness and remaining errors aremain-
ly random among classes, the purity is also high, which is observable
from the confusion matrix of the PLS-DA model.

4.3. Robustness testing

To finally assess the previously created models robustness and ver-
satility, spectra of an extended sample set (for every alloy where more
samples were available), including the samples used before, taken
with a variety of spectrometers (Aryelle 150, Aryelle 400), cameras
(CCD, ICCD and EMCCD) and lasers (Quantel Twins BSL) in different sin-
gle pulse (SP) and double pulse (DP) configurations (using either one of
the laser heads as a SP laser or both as DP) were combined into a data
pool containing 11,200 spectra. This is not a use case but only intended
to assess the general robustness and flexibility of the chemometric
model created with the original setup described earlier. The positive re-
sult underlines the general possibility to create models off site with a
similar but not the same setup, not interrupting the 24/7 application
for taking reference measurements. The classification correctness and
using the same system but varying experimental settings. Valueswithin the square are the
every class, % correct is the percentage of correct results and the average correctness in the



Fig. 4. Confusionmatrix of the PLS-DA and PCAmodel validation using spectra generatedwith different experimental setups and settings. Values within the square are the number of clas-
sification results for every class. Row trash is the number of discarded spectra for every class, % correct is the percentage of correct results and the average correctness in the right columnof
that row. The same applies to the % trash row for discarded spectra.
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the purity of the PLS-DAmodel drops in some cases (e.g. Fe, Zn or brass),
however formost classes the classification correctness and purity stay at
values larger than 90% (Fig. 4). PCA results are more or less the same as
with the larger validation set. The outcomeof this test is that the PLS-DA
model can be made extremely robust against external influences by
carefully selecting appropriate pretreatment algorithms and intense
validation.

4.4. Online sorting results

Based on the observations from the previous sections, tests with on-
line sorting of fresh untouched samples on site were performed. Sam-
ples were manually preclassified and positioned on the conveyor belt
in the same way as the machinery does, in a known order to allow the
afterward assignment of classification results to the respective samples.
Automatic sample positioning would not allow the estimation of the
classification correctness but the purity only. Because the conveyor
Fig. 5.Online sorting results applying the previously validated PLS-DAmodel to fresh sam-
ples at the sorting facility. Classification result iron is usually due to laser hitting the con-
veyor belt instead of a sample. Such classification results have been removed in the
calculation of the classification correctness. Values within the square are the number of
classification results for every class. Row trash is the number of discarded spectra for
every class, % correct is the percentage of correct results and the average correctness in
the right column of that row. The same applies to the % trash row for discarded spectra.
belt is steel plated, laser pulsemisses result in a classification of the sam-
ples as iron. Therefore, the classification result iron for other classes is
ignored and not treated as an error. The test was repeated four times
on two days (two runs per day, Cr, Ni and Pb only once per day) with
up to 80 samples per class. The accumulated results are shown in Fig. 5.

Also in this test, the typical misclassifications of brass and silver as
copper can be observed. Additionally, an increased amount of rejected
results relative to previous tests (average of 18% compared to approx.
10%) is present. This is due to the fresh dirt crust and dust layer on the
samples which was already worn down on laboratory test samples. Es-
pecially for zinc (39%) and aluminum (24%), a significant increase of
trash classifications occurred. This is due to the fact that many samples
of those classes are covered with paint which the laser sometimes fails
to penetrate with a single burst even with the double pulse laser used.
Such samples would require an even stronger cleaning laser or other
means of sample cleaning.
5. Conclusion

A versatile system for the simultaneous classification of 10 different
types of scrapmetal typically found on junk yards by the use of a newly
developed high speed Echelle system capable of performing 25 mea-
surements per second was developed. Because single burst measure-
ments are done, this speed translates directly into a sampling speed of
25 samples per second. Classification has been done using PLS-DA
showing average classification correctness N88% during online analysis
whichwas shown to greatly excel a PCAbased on the samedata. The ap-
proach presented in this paper is versatile and can be extended to other
sample classes by simply changing the model data. This versatility is
mainly achieved by the use of an Echelle spectrometer covering a
wide spectral range simultaneously at high resolution.
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