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Abstract: Laser-induced breakdown spectroscopy, coupled with advanced chemometric meth-
ods, was used to quantitate multiple elements in a seaweed-based fertilizer. The influence of
important parameters was determined using partial least squares regression (PLSR), support
vector regression (SVR) and random forest (RF) optimizations. Optimal results for Mg, K and
P were obtained using PLSR, whereas RF yielded the best results for Mn, Cu, Sr and Ca. The
best predictions for Ba levels were obtained with SVR. The lowest root mean square errors in
the prediction sets for Mn, Cu, Sr, Ba, Mg, K, P and Ca were 48.27 µg/g, 36.90 µg/g, 0.37mg/g,
40.32 µg/g, 1.99mg/g, 2.03mg/g, 4.81mg/g and 14.08mg/g, respectively, with average relative
standard deviations of 13.65%, 2.68%, 19.80%, 5.17%, 3.32%, 2.98%, 1.82% and 5.81%. The
results showed that the optimal multivariate model depended on the specific element being ana-
lyzed. The proposed method provides a rapid means of determining multielement concentrations
in seaweed-based fertilizers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The demand for high-quality agricultural products continues to grow with the world population.
The fertilizer industry, which supplies essential nutrients for crop growth, is predicted to grow as
a result of this demand [1,2]. The ability to rapidly determine the elemental content in a given
fertilizer is key to improving its quality and performance [3]. The most common techniques
used to determine elemental concentrations in fertilizers are atomic absorption spectrometry
and atomic emission spectrometry. However, these techniques require complicated and time-
consuming sample pre-treatment procedures. Alternatively, laser ablation-inductively coupled
plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence (XRF) can be used to directly
analyze solid samples. Unfortunately, LA-ICP-MS requires expensive equipment, rendering it
impractical for widespread industrialization, and XRF cannot accurately detect lighter elements
[4]. Therefore, there is an urgent need for a reliable and direct analytical method that can provide
rapid, high-quality information about the elemental composition of solid fertilizers.

Laser-induced breakdown spectroscopy (LIBS) is an elemental analysis technique that measures
the spectral emission from elements in a laser-induced plasma. LIBS has been widely applied in
a variety of fields over the last decade [5]. The main advantages of LIBS techniques include
minimal sample preparation, rapid response and simultaneous multielement identification [6].
These features are ideally suited for direct qualitative and quantitative analyses of fertilizers, as
demonstrated in several published reports [7–10]. However, the properties of solid fertilizers,
such as particle size and heterogeneity introduce special matrix effects, posing a great challenge
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for the laser plasma stability and detection accuracy [11]. The matrix effects in a LIBS plasma are
often complex and inevitably non-linear, which leads to inaccurate results when using a univariate
calculation method [12]. The precision and accuracy of LIBS techniques are primary concerns
in direct analyses. Internal standardization is one of appropriate methods used to minimize
fluctuations in LIBS techniques. However, it is difficult to select an adequate internal standard in
LIBS analysis [13]. Multivariate regression methods that eliminate interference factors can be
used to extract useful information from LIBS spectra and obtain effective calibration curves for
quantitative analyses [14,15].

LIBS technique coupled with partial least squares regression could be a reliable and accurate
method in the quantitative determination of element in compound fertilizers matrix [16]. Yao et al.
employed partial least squares regression method to accurately detect P and K content in fertilizer
with LIBS [3]. A commercial analytical strategy employing partial least squares regression has
been used to quantitatively analyze mineral fertilizers [17]. A method combined LIBS with
Derringer’s desirability function was also used to direct analysis the pelletized samples [18].
An ensemble learning algorithm, named Adaboost backpropagation artificial neural network,
was used to develop multivariate analysis models in agricultural biochar [11]. Nicolodelli
et al. reviewed the last decade of LIBS applications focused on fertilizer characterization.
Multivariate algorithms are beneficial to improve the accuracy of the quantitative results by
eliminating interference factors and extracting useful information from spectra. LIBS coupled
with multivariate chemometric methods is an attractive technique for the direct analysis of solid
fertilizer samples [19]. Importantly, multivariate regression methods could be used to reduce
redundant information and make a breakthrough in analytical capabilities [20]. However, no
LIBS application has been performed on seaweed fertilizers and quantitative measurement in
complex matrix fertilizers is still a challenge in LIBS analysis. Therefore, it is important to
define the most appropriate experimental conditions, including various spectral preprocessing
and multivariate models, for the quantitative analysis of different elements in seaweed fertilizer
with LIBS.

The main goal of this study was the development of a LIBS analytical method for multielement
simultaneous analysis of seaweed fertilizer samples. Principle component analysis (PCA) was
applied to LIBS data to help discriminate and quantitate elemental emission peaks. To our
knowledge, no prior study has addressed the multielement, rapid analysis of seaweed-based
fertilizers using LIBS combined with various multivariable algorithms. Here, LIBS data were
processed using several advanced chemometric methods, including partial least squares regression
(PLSR), support vector regression (SVR) and random forest (RF) algorithms, to predict the
multielement content in seaweed fertilizer. The data pre-treatment methods and input variables
used in the regression analyses were optimized and quantitative methods were constructed for
each target element.

2. Experiment

2.1. Sample preparation

Eight seaweed fertilizer samples were supplied by the Ministry of Agriculture Key Laboratory of
Seaweed Fertilizers (Qingdao, China). The samples were oven-dried at 50°C for 1.5 h to attain a
constant weight. Dried samples were ground in a blender. The obtained powder was selected
through a sieve to obtain a uniform particle size (100 mesh, 150 µm) and stored at 4°C before use.
For LIBS measurements, 500mg of dried sample was put into a tableting press (FW-5, Botian,
Tianjin, China) and pressed at 10 atm for 120 s. The resulting thickness and diameter of each
pellet was about 2mm and 12mm, respectively. Five pellets were prepared for each sample. Thus,
40 pellets of eight seaweed fertilizer samples were obtained. For reference, the concentrations
of Mn, Cu, Sr, Ba, Mg, K, P and Ca in each sample were measured by inductively coupled
plasma-optical emission spectroscopy (ICP-OES) with a model OPTIMA 8000 (PerkinElmer,
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Shelton, CT, USA). To prepare for ICP-OES analysis, 200mg of each fertilizer sample was
digested in a boiling mixture of 4mL of aqua regia (HNO3 + 3HCl) and 1mL of 30% H2O2 to
obtain a clear solution.

2.2. LIBS measurement

A schematic diagram and detailed description of the experimental LIBS setups used in this study
has been published previously [21]. Briefly, a Nd:YAG laser was selected as the excitation
source (wavelength 1064 nm, pulse duration 6 ns, Litron Lasers, Rugby, UK). The laser beam was
perpendicularly focused onto the surface of the sample pellets with a 10× objective lens, producing
a spot ∼200 µm in diameter. The vertical position of the sample was monitored using two crossed
red laser beams at oblique incidence on the sample surface. A collimating lens (74-UV Ocean
optics, 5mm diameter, 10mm focal length) was held on amicro xyz-translation stage at an accident
angle of 45° to the target surface for collimating the plasma signal into a coupling fiber (400 µm
core diameter). The fiber was connected to an echelle spectrometer (Aryelle200; Lasertechnik
Berlin GmbH, Berlin, Germany; 193-840 nm, spectral resolution: λ/∆λ= 9000) equipped with
an ICCD camera (iStar, Andor Technology, Belfast, UK). The wavelength calibration of the
spectrometer and spectral response of the detection system were performed with mercury argon
lamp and a certified deuterium halogen tungsten light source (AvaLight-DH-BAL-CAL, Avantes),
respectively. The overall linear dispersion of the spectrometer camera system ranges from 24 pm
(at 220 nm) to 83 pm per pixel (at 750 nm). The widths of spectral lines were determined by the
mercury argon lamp source. The laser pulse energy was fixed to 80 mJ with a repetition rate of
5Hz. In order to compensate for the decreasing emission signals due to the rapid decay of the
plasma and obtain good signal-to-noise ratio (SNRs), an optimized delayed detection window
and an adjusted for gate width were used. LIBS spectra were acquired with a delay of 1.0 µs,
and the gate width of the camera was set to 100 µs. To obtain a sufficient SNRs, each spectrum
represents the accumulation of ten ablation events, and a total of 20 spectra were collected for
each sample.

2.3. Multivariate regression algorithm

PLSR, SVR and RF were used to construct an optimal quantitative method for each of the target
elements in the seaweed fertilizer. Before modelling, five samples (seaweed organic fertilizer
100%, seaweed organic fertilizer powder 100%, seaweed organic-inorganic compound fertilizer,
water-soluble fertilizer and macro-element water-soluble fertilizer) were randomly selected as the
calibration set. Three additional samples (seaweed organic fertilizer 50%, seaweed extract powder
and compound fertilizer) were selected as the prediction set to evaluate the performance of the
established models. Thus, 100 spectra were used to construct the calibrate model and 60 spectra
were used to test model. The linear correlation coefficient (R) between the ICP-OES-measured
value and the LIBS-predicted value was used to evaluate the predictive ability of each model. The
root mean square error (RMSE) was used to evaluate the prediction accuracy of the calibration
model and the relative standard deviation (RSD) was used to evaluate the precision of the model.
The formulae used to calculate RMSE and RSD are as follows:

RMSE =

√∑n
i=1 (yi − yip)

2

n − 1
(1)

RSD(%) =
S

Xm
× 100% (2)

where yi is the reference value (ICP-OES-measured value) of sample i, yip is the prediction value
(LIBS-predicted value) of sample i, n is the number of spectra, S is the standard deviation and Xm
is the mean of the predicted values. The root mean square error of calibration (RMSEC) and the
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root mean square error of prediction (RMSEP) represent model performance with regard to the
calibration samples and test samples, respectively. MATLAB R2018a software (MathWorks,
Natick, MA, USA) was used to perform the data analysis and statistical multivariate analysis.

3. Results & discussion

3.1. Qualitative spectral analysis

Averaged LIBS spectra of seaweed fertilizer samples are given in Fig. 1. Figures 2(a–d) show
representative elemental emission spectra from the seaweed fertilizer samples. Stronger emission
lines, including those from Mn, Mg, Ca, K, Na, and Sr, could be visibly differentiated in this
spectrum. From these spectra, we also can see that emissions from certain numbers of trace
elements like Si (288.15 nm, 390.53 nm), and Fe (371.99 nm, 373.49 nm, 373.71 nm, 374.56 nm,
374.83 nm, 374.95 nm, 375.82 nm, 382.04 nm) are still observable with satisfying SNRs. The
identification of these lines was performed by comparison with reference data in the National
Institute of Standards and Technology (NIST) database. However, eight elements (Mn, Cu, Sr,
Ba, Mg, K, P and Ca) were studied in this experiment, so only the characteristic peaks of these
eight elements were listed. A total of 75 characteristic spectral lines belonging to the eight target
elements, with no interfering peaks from other elements, were selected for numerical analysis.
These lines were extracted from the data as shown in Table 1.

Fig. 1. The averaged LIBS spectra of seaweed fertilizer samples (S1 seaweed organic
fertilizer 50%; S2 seaweed organic fertilizer 100%; S3 seaweed organic fertilizer powder
100%; S4 seaweed extract powder; S5 Seaweed organic-inorganic compound fertilizer; S6
Water soluble fertilizer; S7 Macro element water soluble fertilizer; S8 Compound fertilizer).

Based on spectral patterns, it was possible to classify the samples into different groups [22].
PCA was applied to all of the acquired LIBS data. Figure 3 presents the resulting score plot using
PC1, PC2 and PC4. Each group is shown with a different color for better visualization. PC1
accounted for 88.48% of the total variability, where PC2 (7.24% of the total variability) and PC4
(0.88% of the total variability) provided supplemental information. Seaweed organic fertilizer
50%, seaweed extract powder, water-soluble fertilizer, macro-element water-soluble fertilizer,
and compound fertilizer could be distinguished, as illustrated in Fig. 3. However, seaweed
organic fertilizer 100%, seaweed organic fertilizer powder 100%, and seaweed organic-inorganic
compound fertilizer were clustered together, suggesting that these fertilizers were similar in
elemental composition and matrix. A previous study found that flours with similar LIBS spectral
patterns tended to cluster together in PCA plots [22]. Thus, PCA alone is suitable for the
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Fig. 2. Representative LIBS spectra of macro element water soluble fertilizer sample.

Table 1. Spectral lines of the target elements.

Element Spectral lines/nm

Mn I 360.85 383.52 403.08 403.31 403.45 408.23

Mn II 257.61 259.37 260.55 293.93 294.92

Cu I 324.75 327.4

Sr I 460.73 640.85

Sr II 407.77 421.55

Ba I 390.98 399.38 553.55 712.03

Ba II 252.84 455.4 493.41 585.37 649.69

Mg I
277.67 277.98 278.15 285.21 294.2 333.21 382.94 383.23

383.83 516.72 517.27 518.36

Mg II 279.08 279.55 279.8 280.27 385.04 433.19

K I 766.49 769.9

P I 213.62 214.92 253.53

Ca I
387.58 422.67 428.94 429.9 430.25 430.77 431.87 442.54

443.50 445.48 487.81 534.95 558.2 558.88 559.01 559.44

559.85 612.22 643.91 644.98 645.56 646.26 649.38

Ca II 317.93 393.37 396.85

qualitative classification of seaweed fertilizers based on the variance of their corresponding LIBS
spectra.

3.2. Quantitative analysis

Exploiting the linear relationship between the intensity of a given characteristic elemental peak
and the concentration of that element in the sample matrix is the most common quantitative
protocol. However, LIBS spectra can be notoriously noisy, inconsistent, scattered, incomplete and
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Fig. 3. The 3D PCA score plots. (1 seaweed organic fertilizer 50%; 2 seaweed organic
fertilizer 100%; 3 seaweed organic fertilizer powder 100%; 4 seaweed extract powder; 5
seaweed organic-inorganic compound fertilizer; 6 water soluble fertilizer; 7 macro element
water soluble fertilizer; 8 compound fertilizer).

uncertain [23]. In addition, matrix effects associated with laser ablation and plasma generation
can result in non-linear interactions [20]. Therefore, as a first step in our quantitative analysis,
five pre-treatment methods (normalization by maximum, normalization by the sum of all signals,
and normalization by vector, scale, and first derivative) were performed to enhance the accuracy
of the model. Leave-one-out cross-validation was conducted to avoid over-fitting the model [23].
The results were evaluated according to root mean squared error of cross-validation (RMSECV).
Figure 4 shows the resulting RMSECV values obtained with different data pre-treatment methods.
Normalization by the sum of all signals yielded the highest RMSECV values for Cu, Sr, K, P and
Ca. Normalization by vector yielded the best results for Mn, Ba and Mg.

Fig. 4. The RMSECV values obtained with different data pre-treatment methods.

To reduce noise, a reduction in the number of variables was performed by selecting only
wavelength ranges containing useful peaks [24]. The PCA scores, the peak intensity of featured
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lines for each element and different wavelet functions of Daubechies (db1-db8) were investigated.
The results of leave-one-out cross-validation were also evaluated by the resulting RMSECV
values (Fig. 5). The RMSECV values were lower for Mn, Ba, Mg, Sr and K when using the db4
wavelet function to generate input variables. However, db1, db2 and db8 yielded better results for
Cu, Ca and P, respectively.

Fig. 5. The RMSECV values obtained with different variable selection methods.

Table 2. Optimal parameters used to construct the multivariable quantitative model.

Element Pre-treat
method

Input
variables

Variable
numbers

PLSR SVR RF
Latent
variable c g ntree mtry

Mn Normalized by
vector

Wavelet
function of
Daubechies 4

2730 13 256 48.50 500 910

Cu Normalized by
sum of all
signals

Wavelet
function of
Daubechies 1

21709 14 256 256 500 7236

Sr Normalized by
sum of all
signals

Wavelet
function of
Daubechies 4

2730 16 256 256 500 910

Ba Normalized by
vector

Wavelet
function of
Daubechies 4

2730 13 256 27.86 500 910

Mg Normalized by
vector

Wavelet
function of
Daubechies 8

188 11 256 9.19 500 910

K Normalized by
sum of all
signals

Wavelet
function of
Daubechies 4

2730 13 256 256 500 910

P Normalized by
sum of all
signals

Wavelet
function of
Daubechies 8

188 16 256 256 500 62

Ca Normalized by
sum of all
signals

Wavelet
function of
Daubechies 2

2730 14 256 256 500 3621
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Table 2 lists the optimal parameters, including pre-treatment method, input variables, and
the number of variables used to construct multivariable quantitative models, for the eight target
elements. The optimal latent variables in the PLSR model, the significant penalty parameter c
and the kernel parameter g in the SVR model, and the random regression tree forest tree (ntree)
and characteristics of random variables (mtry) of the RF model are also listed in Table 2.

The data in Table 3 show the predictive performance of the PLSR, SVR and RF models. The
PLSR and RF models exhibited the highest correlation coefficients of around 0.99 for all of the
target elements, whereas the SVR model exhibited a coefficient of 0.99 for only Mn, Cu, Ba and
K. The accuracy of each model was evaluated according to the RMSEP values obtained with the
test groups. The RMSEP values obtained for Mn, Sr, Mg, K and P using the PLSR model were
lower than those obtained with the SVR and RF models. However, the predicted results for Sr and
Mn using the PLSR and SVR models yielded some negative values, which is unacceptable for
practical applications. Thus, the RF model was selected as optimal for quantitative analyses of Sr
andMn. Finally, the predicted errors with the best calibration results for Mn, Sr, Mg, K and P were
48.27 µg/g, 0.37mg/g, 1.99mg/g, 2.03mg/g and 4.81mg/g, respectively. In contrast, RMSEP
values obtained using the RF model for Cu and Ca, 36.90 µg/g and 14.08mg/g, respectively, were
significantly lower than those obtained with the PLSR and SVR models. The lowest RMSEP for
Ba was 40.32 µg/g, obtained with the SVR model. Therefore, of the three numerical methods,
SVR was deemed the most suitable for quantitative analysis of Ba. We hypotheses that is due to
difference of the prediction mechanisms between linear and nonlinear algorithms. Moreover,
the level of noise, baseline drift and overlapping peaks of target elements are different during
the LIBS spectral acquisition process, which may affect the quantitative analysis results. Other
authors that studied the quantitative and classification analyses of atmospheric sedimentation also
found that each metal in atmospheric sedimentation has its own suitable quantitative analysis
method [25].

Table 3. Predictive performance of calibration and test sets of PLSR, SVR and RF models for target
elements.

Elem-
ents

PLSR SVR RF
Calibration

group Test group
Calibration

group Test group
Calibration

group Test group

R RMSEC R RMSEP R RMSEC R RMSEP R RMSEC R RMSEP

Mn
µg/g

0.9953 14.02 0.9459 44.26 0.9952 14.16 0.7624 116.38 0.9992 6.00 0.9423 48.27

Cu
µg/g

0.9998 0.39 0.9586 37.65 0.9900 3.07 0.9260 37.65 0.9996 0.63 0.7420 36.90

Sr
mg/g

0.9992 0.037 0.9045 0.089 0.8136 0.98 0.8391 0.090 0.9978 0.064 0.8733 0.37

Ba
µg/g

0.9955 10.23 0.9485 63.78 0.9948 11.01 0.9236 40.32 0.9990 4.85 0.9434 47.84

Mg
mg/g

0.9992 0.11 0.9350 1.99 0.9841 0.62 0.8132 2.17 0.9985 0.22 0.1965 2.73

K
mg/g

0.9998 0.076 0.8581 2.03 0.9905 4.07 0.9733 2.20 0.9998 0.099 0.9573 2.05

P
mg/g

0.9994 0.56 0.9657 4.81 0.8631 16.34 0.9757 7.46 0.9990 0.74 0.4981 6.66

Ca
mg/g

0.9990 1.88 0.8954 18.27 0.8195 43.09 0.8053 27.12 0.9989 2.03 0.9306 14.08

Figure 6 and Fig. 7 show optimal scatter plots of ICP-OES data versus LIBS-predicted values
for the eight target elements. All of the calibration models for the target elements showed high
correlations when applied to the seaweed fertilizer samples. Note that the Cu content in the
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seaweed organic fertilizer 50% test sample was 107.23 µg/g (see Fig. 6(b)), which was beyond the
linear range of the calculate curve. Thus, the predicted result for this sample showed a relatively
high RMSEP. RSDs were calculated as a measure of precision of the regression models. The
average RSDs for Mn, Cu, Sr, Ba, Mg, K, P and Ca were 13.65%, 2.68%, 19.80%, 5.17%, 3.32%,

Fig. 6. The performance of each numerical model for determining multielement concentra-
tions in calibration samples: (a) RF model for Mn, (b) RF model for Cu, (c) RF model for Sr
and (d) SVR model for Ba.

Fig. 7. The performance of each numerical model for determining multielement concen-
trations in calibration samples: (a) PLSR model for Mg, (b) PLSR model for K, (c) PLSR
model for P and (d) RF model for Ca.
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2.98%, 1.82% and 5.81%, respectively. These predicted results are satisfactory and confirm that
the chemometric methods described herein are applicable to quantitative, multielement detection
in seaweed fertilizers.

4. Conclusions

The rapid and direct quantitation of the elemental content of fertilizers is important for quality
control. The results presented herein indicate that LIBS coupled with advanced chemometric
methods is suitable for quantitative, multielement analysis of seaweed fertilizers. PCA analysis
of LIBS spectra can be used to categorize seaweed fertilizers according to the mixture matrix. In
addition, multivariable quantitative methods were constructed for direct analyses of Mn, Cu, Sr,
Ba, Mg, K, P and Ca. This study shows that a single quantitative algorithm is not suitable for
all elements. Instead, it is important to select an optimal multivariate model for each element.
In follow-up work, in order to have a better understanding on the characteristics of different
algorithms and achieve more precise prediction, more elements in more different kinds of matrix
will be studied.
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